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Rotational stagnation point flow 

By WALLACE D. HAYES 
Princeton University, Princeton, New Jersey 

(Received 13 January 1964) 

The constant-density inviscid rotational flow in the neighbourhood of a general 
stagnation point on a wall is investigated. In all but very special cases, the solu- 
tion is non-analytic and the vorticity at  the wall is infinite; the stagnation stream- 
line is tangent to the wall at  the stagnation point; stagnation points of saddle- 
point type cannot exist. 

The boundary-layer equations corresponding to the inviscid solutions studied 
a,re presented. 

1. Introduction 
It is well known that the splitting streamline a t  a stagnation point in a planar 

rotational flow makes a finite angle with the normal to the body. The present 
paper was suggested by the question of what the analogous result would be at  
a general stagnation point in a three-dimensional flow. The answer to this 
question turns out to be that the stagnation streamline in this case comes in 
tangent to the body in general. 

An analysis is made of the constant-density flow on one side of a plane wall 
in which the lateral velocity components are linear functions of the lateral 
variables and the normal component is independent of the lateral variables. 
All components are general functions of distance from the wall. Such a flow can 
simulate in local behaviour a general compressible flow near a general stagnation 
point on a body of finite curvature. A constant viscosity coefficient is introduced 
into the general equations for the purpose of permitting the study of boundary 
layers in such flows. However, our primary interest is focused on the inviscid 
equations, and particularly on their non-analytic solutions. 

The normal component of vorticity at a general inviscid stagnation point is 
necessarily zero. This wiIl be shown in our case but can easiIy seem to be true a t  
the wall in much greater generality. The general stagnation point is characterized 
by a basic parameter a,. If a; < 1 the streamline pattern on the wall is a node, and 
this will be the range of our primary interest. The case a. = 0 represents axisym- 
metric or almost-axisymmetric flow, with the wall streamline pattern a source. 
The case at = 1 represents planar or almost-planar flow, with a degenerate 
wall streamline pattern. The case a; > 1 represents flows for which the wall 
streamline pattern is a saddle-point. The solution types arising in these various 
cases are naturally quite different in nature. 

The effect to be investigated may be described in physical terms as follows: 
There is a distribution of lateral vorticity in the flow approaching the waIl. 
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This vorticity becomes amplified by the lateral stretching of vortex lines in the 
stagnation region flow. The lateral vorticity approaches infinity a t  the wall. 
It is the resulting singular behaviour in the velocity field which is of interest to 
us. 

2. Basic equations 
The space of interest is the part of physical space with Cartesian co-ordinates 

(ax ,  ay, az) for which z 2 0. The wall is the plane z = 0. The quantity a is a refer- 
ence length which may be chosen arbitrarily. The normal flow approaching the 
wall is characterized by a reference velocity gradient U'. The velocity vector in 
matrix notation is assumed to have the solenoidal form 

[q] = iU'a[P + x(H'  - a )  + ~ ( p  - y ) ,  G + x(P + y )  + y(H'  + a) ,  - 2H].  (2.1) 
Here P, G, H ,  a ,  P, and y are functions of z alone. Primes will denote differentia- 
tion, except in the symbol U'. The vorticity corresponding to (2.1) may be 
expressed as  
[ V X  q] = ~ U ' [ - G f - ~ ( P ' + ~ ' ) - y ( H " + a ) , ~ ' + f ( H ' ' - a ' ) + y ( P ' - y ' ) , 2 y ] .  (2.2) 

The momentum equation 

yields for the pressure gradient 
q . vq + p-'Vp = uv2q 

[Vpl = &pUf2a.[J1 + x(D - A )  + y(B - C) ,  M +x(B + C) + y(D + A ) ,  
- 2HH' - 2R-1Hf'], 

where A = Ha' - H'a + R-la", 
B = HP'-H'P+R-l$,  
C = Hy' -H'y+R- ly" ,  
D = HH" - H'2 + h(H'2 - a2 - ,8 2 +y2)+R-lH'",  
M = H P ' - ~ ( H ' - a ) P - ~ ( P - y ) " R - l P ' ' ,  
N = HG' - &(H' +a)  G - $(P+ y )  P + R-lG", 

and R = U'a2/u. 

(2.4) 
(2 .5a)  
(2.5 b )  
( 2 . 5 ~ )  
(2.5d) 
(2 .5e )  

(2 .5f)  

(2.5 9 )  
The curl of the pressure gradient is then 

[V x (Vp) ]  = &pU'Z[ - " - z(B' + C)' - y(D' + A'), 

Jl' +x(D' -A')  +y@' - C'), 2CJ. (2.6) 

The vanishing of this vector is the condition of integrability for the pressure, and 
leads to the results 

C = 0, A ,  B, D, M ,  N = coI1st. (2.7) 
The pressure may now be expressed as 

p = pSl + ~ P U ' ~ ~ ~ ( & D ( X ~  + y2) + &A (yz - x2)  + BXY + M X  + N y  - H - 3R-lH'). 

The constant B can be eliminated by a rotation of axes; thus, without loss of 
generality we can choose the x-  and y-axes as principal axes and set 

(2.8) 

B = 0. (2.9) 
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Analogously, by a suitable choice of the location of the origin on the plane z = 0 
we can set 

as long as D - A $. 0, aiid can set 
Jf = 0 (2.10) 

N = O  (2.11) 

as long as D + A + 0. Equations ( 2 . 5 )  are now the equations governing the flow. 
An important feature is that the first four equations may be solved without the 
last two, and that the last two are then strictly linear in F and G. We shall term 
the solution of the first four equations the primary solution and that of the last 
two as the secondury solution. 

In  inviscid flow we set 
3-1 = 0 (2.12) 

aiid impose the boundary conditions 

H ( 0 )  = 0, H’(0) = 1, a(0)  = ao. (2.13a, b, c )  

The second of these corresponds to the identification of the physical normal 
gradient of normal velocity with the quantity U‘. With these boundary con- 
ditions we have 

p(0) = 0,  y ( 0 )  = 0, F(0)  = 0, G(0)  = 0, (2.14a, 6, c ,  d )  

provided41 = 0 and N = 0, and 

A = -  a. = -a(O), D = -g(l+fx;). (2.15 u, b )  

We shall use these expressions for A and D for viscous flow also, without the 
identification of a. as a(0) and of 1 as H’(0). Without loss of generality, we can 
restrict a. to non-negative values. Mote that the result (2.14b) is independent of 
choice of axes or origin, and states that the normal component of vorticity is 
zero everywhere on the wall. 

In the inviscid case, the integrals for p and y may be obtained immediately. 
They are 

p = PAH, y = y;H.  ( 2 . 1 6 a 7 6 )  

The basic equations then become 

Ha‘ + a0 - H‘a = 0, (2.17 a) 

HH” + +( 1 + a; - Nf2 - a2) - ;(PA2 - yAz) H 2  = 0,  (3.170) 

HF’-&(H’ -a )F-  i (Ph-~h)€€G = 0, (2.18a) 

HG‘ - a(H’ +a) G - &(PA + yh) H F  = 0, (2.18b) 

provided M = 0 and N = 0. 
It is clear that H is to be interpreted as normal velocity and y as normal vor- 

ticity. The quantity a is to be interpreted as measuring the distortion of the flow 
field from axial symmetry, or alternatively H’ -a and H‘ + a as the x and y 
components, respectively, of the basic flow out from the stagnation point. The 
quantity p essentially measures the twist of the principal axes away from the 
wall. 
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3. The inviscid case a, = 0 
If a, = 0, we can write the solution for a immediately as 

= &AH ( 3 . 1 )  

in analogy with (2 .16) .  Equation (2 .17b)  becomes 
HH" + &( 1 - H'2) - +k2H2 = 0, 

where 
The general solution of (3 .2 )  subject to (3 .13)  is 

k2 = ah2  + P A 2  - yh2. 

H = k-l sinh kz + IC-~H: (cosh kx - 1 ) .  (3 .4)  

Thus in this case the principal solution is always analytic. If k2 in (3 .3 )  is negative 
the hyperbolic functions in (3 .4 )  are replaced by trigonometric ones. 

The secondary solution (the solution of (2 .18) )  may be expressed in the form 
F = [ f ,  cosh 4kz + k-l{(Ph - yh) go - ahf,} sinh +kz] Ha, (3 .5a )  

G = [go cosh +kx + k-l((& + yA)fo + a&,) sinh +kz] H t ,  (3 .5b)  

where f o  and go are arbitrary constants. Both P and G have a z* non-analyticity 
nea,r the wall, and the vorticity has a 2-4 behaviour near the wall. 

The stagnation streamline has a shape near the stagnation point described 

by -x / fo  = -y/g, = 4x6. (3 .6 )  

It is therefore locally parabolic in shape and is tangent to the wall at  the stagna- 
tion point. 

4. The inviscid cases 0 < a,, < 1 and 1 < a, 
An analytic primary solution exists in the case a: + 1. This solution is given 

bY a = aoH', H = k-l sinh kz,  (4 .1~4 ,  b )  

This solution is rather special, with no free parameters in the solution for a and 
H .  The secondary solution is locally of the form 

where k2 = (p;"y;2)/(1-a;). (4 .2 )  

(4 .3a )  

(4 .3b)  

where fo and go are arbitrary constants. 
Note that if a, > 1 the solution for F yields infinite velocity at the wall with 

fo + 0. The physical interpretation of this result is that a, stagnation point of the 
type with a, > 1 cannot exist with non-zero vorticity on the stagnation stream- 
line (with non-zerof,). With 0 < a, < 1 andf, + 0 or go + 0 thevorticityis infinite 
at  the wall. The stagnation streamline near the stagnation point is described by 

(4 .4~4,  b )  -z/fo =L 24(1-a0)/2( 1 - ao), - y/go G z&(l+ao)/2( 1 + ao). 

This result reduces to (3 .6)  in the case a, = 0. 
24 Fluid Mech. 19 
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the form 
With 1 > a, > 0 there is a non-analytic primary solution which is locally of 

H‘ = 1 + h, ~1--a0 + h, zl+ao + O( zZ(l--no) 1, (4 .5a )  

a = 01, - hozl-ao + $zl+-ao + O(z2(1-a0)), ( 4 .5b )  

where h, and h, are arbitrary constants. With ho $; 0 the vorticity is infinite on 
the wall away from the stagnation point. The secondary solution is of a form 
similar to that of (4 .3) ,  except that the order bracket is 

{ 1 + O(hox1-aO) + O(h,zl+-ao)). 

With 1 < a, the solution of (4 .5 )  with ho = 0 is available, but the degree of 
freedom in the parameter h, is lost. In  this case H‘ + a - 1 -ao is identically zero. 
A bounded solution for H’ and a does exist for which H‘ +a - 1 - a, is not identi- 
cally zero. However this solution corresponds to H’(0) = a. and a(0) = 1, in 
violation of the conditions (2.136, c ) ;  in this case the basic parameter a, is 
essentially replaced by aZ1. This solution is rejected. 

5. The inviscid case a,, = 1 
If PA2 = yi2 a primary analytic solution is available, and is given by 

H = k-l sinh kz, a = H‘ = cosh kz ,  ( 5 . l a ,  6 )  

where k is arbitrary. In  this case M cannot generally be set equal to zero, and 

( 5 . 2  a, b )  

Unless both fo and M are zero no stagnation point appears in this case. 
The stagnation streamline shape (with M = 0 and fo = 0 )  near the stagnation 

point is described by 
x:=o,  Y A - 1  490 z * (5 .3a,  b )  

The result is the well-known one mentioned at the beginning of the introduction, 
with the stagnation streamline coming into the wall at a finite angle to the 
normal. 

To investigate the more general solutions let us introduce new variables by 

8 = +(H’+a)- l ,  q5 = &(H’--a), H = z ( l+h) .  ( 5 . 4 a , b , c )  

At the same time we introduce a new independent variable < by 

< = In (z,/z), z = z,e-t, (5.5) 

where z ,  is a reference value of z which is a t  our disposal. This variable 6 approaches 
+a as z approaches zero. Indicating differentiation with respect to < by the 
symbol O ,  we obtain in place of (2.17) the system 

0 

h-h = 8 +#, (5 .6)  

(5.7) 

(5.8) 

(1 + h) i? + 28 + 82 + $(PA2 - r;2) z2( 1 + h)2 = 0, 

( 1  + h) 4 + $2 + $(PA2 - yA2) z2( 1 + h)2 = 0. 
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We now formally expand h, 8, and $ as 

h = h,(O + h2h,(6) + 0(z3) ,  (5.9a) 
8 =  ib2e,(6) + o(z3),  (5.9b) 

$ = $,(el + W l ( 6 )  + o(z3),  (5.9c) 

recognizing that a certain amount of non-uniqueness is inherent in such an expan- 
sion. We remove the non-uniqueness by formally equating like powers of z2 in 
the equation system, and by excluding solutions for ho,hl,Bl, etc., which are 
exponential in 5. This approach leads to the equations 

0 

h, - ho = $0, 

(1 +h,) B, - 2h,O, + 91/32 -$) (1 + ho)2 = 0, 

(5 .10~)  

3 h 4 ,  = 8,+4,, (5.10b) 

(5.10~) 

(l+h,)$,+& = 0,  (5.10d) 
0 

(1 + ho) (8, - 2$,) +h,$, + 2$041 + :(PA2 - yh2) (1 + ho)2 = 0. (5.10e) 

The equation system can obviously be continued. We distinguish two cases: 
Case (i). The functions 4, and h, are identically zero. If /3h2 = yh2, q5 =_ 0, 

and 8, = k2, the solution (5.1) appears. In  general we have 

4, = t ( / 3 ; 2  - 7 ’ 2 )  0 7  (5 .11~)  

6 1 -  - k 2 - 1  2 (PA2 - YA2) 6,  (5.11 b )  

h, = +k2 + &&?A2 - ?A2) (1 - 66). (5.1 1 c) 
Here one degree of freedom lies in the choice of k2 and of 2,. This solution is a 
weakly non-analytic one which corresponds to (5.1). In  this case the secondary 
solution is not very different from that of (5.2), and the result (5.3) for the 
stagnation streamline applies approximately. 

Case (ii). A non-zero solution to (5 .10~)  and (5.10d) is obtained. In  such a 
solution, the freedom of choice of zo may be used to give the required degree of 
freedom. We may choose the solution with asymptotic form 

(5.13 a)  

(5.12 b )  

The corresponding 8, then has the asymptotic form 
8, = k2[g2 - 2cln 6 + (In [)2 + 2 In 6 -  2 + O(C-l(ln c)3)]  

+ +(PAz - ?Az) [[-In c + 1 + O([-l(ln [)9],  (5.13) 
where k2 is an arbitrary constant. 

in a manner analogous to (5.9). We set 
For the secondary solution in case (ii) it  is again convenient to expand F and G 

F = Fo(g) + Qz2F1([) + 0(z3),  

G = zG0(z) +o(z2), 

(5.14a) 
(5.14b) 
24-2 



372 Wa,lZace D. Hayes 

and obtain for the secondary equations 
0 

(1 + h,) Po + $,Po = - M ,  ( 5 . 1 5 ~ )  

(5.15 b )  
0 

(1  + h,) G,-h,G, + +(PA +?A) (1 + h,) PO = 0, 
0 

(1 + h,) F1- a( 1 +h,) Pi+ $ O F 1  + $1Po + (PA -7;) (1 + h,) Go = 0. ( 5 . 1 5 ~ )  

The solution takes the asymptotic form 
F, = +N[-<+ln<+ l-t- l ln E+O([-2(ln<)2)]+fo$o, 
Go = $(PA + 7;) M[C2 - < In <+In < - 2 + O(<-l(ln [)2)] 

(5.16) 

+ $(PA + y;)fo[l + E - l +  0(k2( ln  0 ) 1  
+go[<-ln5+<-1(lnt;- 1) + 0(t;-2(ln<)2)]. (5.17) 

In  case (ii) 2M must be zero for finite velocity on the wall, and hence for the 
existence of a stagnation point. If f, + 0 a translation of the origin in the x 
direction can be used to make f ,  = 0. Thus we may set f ,  = 0 without loss of 
generality. The lowest-order solution for F may then be obtained from ( 5 . 1 5 ~ ) .  
A stagnation streamline enters the origin in this case, with (5.4~~) holding and 

y &  -1 2 (5.18) 
with 

490 [ln (dZ) + 91 
in place of (5 .4b ) .  This stagnation streamline is tangent to the body at  the stagna- 
tion point. Other points along the x-axis are stagnation points into which no 
stagnation streamline enters. The author is unaware of any previous report of 
such points in inviscid flow. 

6. Boundary-layer equations 
The boundary-layer equations may be obtained directly from the viscous 

equations (2.5). Two essentially equivalent approaches are available : with the 
parameter a fixed we may carry out a transformation to the new variable Rh, 
keeping the quantities H ‘ ,  a, P, and y invariant; alternatively we may simply 
define the arbitrary parameter a so that R as defined in (3.59) is unity. With a 
true boundary layer, outer boundary conditions for the boundary-layer equa- 
tions correspond to inner boundary conditions for some given inviscid flow, 
in a limiting process in which R --f a. 

The inner boundary conditions for the boundary-layer equations are those of 
zero slip 

H ( 0 )  = 0, H’(O) = 0, a(O) = 0, P(0)  = 0, ~ ( 0 )  = 0, P(0) = 0, G(0) = 0. 
(6.1 C L - ~ )  

The principal outer boundary conditions are 

H’(oo) = 1,  a ( a )  = ao. ( 6 . 2 ~ 1 ,  b )  

The transformed quantities PA and $, are of order R-4 and approach zero in the 
limiting process. Thus we set 

/?’(a) = 0,  y ’ ( a )  = 0, (6.3a, b)  

and conclude that /3 and y are identically zero in the boundary-layer equations. 
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In  the case a, = 0 we conclude similarly that a’(co) (and H”(co)) is to be set 
equal to zero. In the case 1 > a, > 0 we analogously set the transformed values 
of h, and h, in (4.5) equal to zero for the external inviscid flow, provided we do 
not have 0 < 1 -ao < 1. 

0, then, the boundary-layer equations become With 1 > a, 

H’” + HH” + &( 1 + - H” - a’) = 0, (6.4a) 

a” +Ha’ +a, - H‘a = 0, 

F”+HP’-&(H’-a)F = 0, 

G”+HG’-&(H’+cz)G = 0,  

for the primary flow, and 
(6.4b) 

(6 .5a)  

(6.5 b )  

for the secondary flow. If a, = 0, then a is identically zero and (6.4a) is the classi- 
cal Falkner-Skan equation for an axisymmetric stagnation point. If 1 > a, > 0, 
then (6.4) are equivalent to those of Howarth (1951) for the boundary layer on a 
general stagnation point. 

In the case a, = 1,  the quantities k, $1, and 8, approach zero in the boundary- 
layer limiting process. Thus in either the analytic case or case (i) of the last section 
we are led to the result 

whereby (6 .4a)  and (6.4 b )  are the same equation, the same as the classicalFalkner- 
Skan equation for a planar stagnation point. The right-hand side of (6.5a) is not 
zero in general in this case. Note that in this case (6.5b) is formally the homo- 
geneous form of (6 .4b);  the solution has been given by Stuart (1959). 

= H‘, (6.6) 

The  case 0 < 1 -ao < 1 

In this case, although the non-analytic parts of the external inviscid solutions 
do approach zero in the limit R -+ co they do so very slowly. To represent the 
boundary layer properly we should permit a corresponding weak parametric 
dependence upon the Reynolds number. We define $ as in (5.4b) as 3(H’ -a) ,  
and write the boundary-layer equations 

H”’ + HH” + +( 1 + a;) - H“ + 2H’$ - 2$’ = 0, (6.7a) 

$” + H$’ + t( 1 - a,)’ - $’ = 0. (6.7b) 

The outer boundary conditions are obtained if a, =I= 1 from (4.5) by replacing 2 

by R-$2. This gives 
(6.8a) 

(6.8b) 

lim R&l-ao) z-(l-ao) (#-++*a,) = h,, 
c+m 

]in1 R%-ao)x-( l -ao)  (H’ - 1) = h 0’ 
z+ m 

If a, = 1 in case (ii) we obtain, with the external parameter zo unchanged, 
lim $ In (Rb,/z) = 1 ,  lim (H’ - 1 )  In (R*zo/z) = 1. (6.9a, b )  
c+m c+m 

Case (i) reduces to (6.6) above, with # = 0. 
The secondary equations corresponding to (6.7) are 

F”+HF’--$F = M ,  G“ +Ha’ - (H’ -$ )G = 0,  (6.10a,b) 
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with M = 0 if a. + 1. If a. = 1, the homogeneous solution F = q5 to ( 6 . 1 0 ~ ~ )  
exists, and this fact permits the general solution of ( 6 . 1 0 ~ )  by quadratures. 
In both (6.5) and (6.10), outer boundary conditions for the secondary solution 
will have a R,eynolds-number dependence. 

7. Conclusions 
In  examining the nature of the inviscid solutions here investigated, we are led 

to the conclusion that the flow patterns characteristic of irrotational stagnation- 
point flows are very special indeed. Although vorticity normal to the wall has 
little significant effect, any non-zero lateral vorticity approaching the wall is 
strongly amplified and changes the nature of the stagnation point in an essential 
manner. The velocity distributions corresponding to this amplified vorticity are 
non-analytic. 

In  rotational flow in general, a stagnation point of saddle-point type (a,, > 1) 
simply does not exist. In almost-planar flow (a,, = 1) also, stagnation points do 
not exist in general; cross-vorticity leads to infinite velocity on the wall, in 
agreement with the qualitative conclusion of Kronauer (1952). The case a,, = 0 
also yields an example of stagnation points on a wall which have no entering 
streamlines. In  the remaining cases, the stagnation point streamline has a curva- 
ture which is infinite at the stagnation point (1 > a, > 0) or is finite there (a,, = 0) 
in a general rotational flow; in these cases the stagnation-point streamline is 
tangent to the wall a t  the stagnation point. 
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